Role of Immune system in HBV cure: Innate and adaptive immunity

Adam J. Gehring, Ph.D.

Biology Lead Toronto Centre for Liver Disease University Health Network (UHN)

Assistant Professor Department of Immunology University of Toronto

Hepatitis B Virus

Hepatotropic DNA virus

- Small (3.2kb) DNA virus that infects hepatocytes
 - 4 proteins
 - Can sustain up to 10¹⁰ HBV virions/ml serum in chronic patients
 - viral antigen can reach mg/ml in serum

- Immunopathology
- Antiviral therapy rarely eliminates HBV
- No effect on cccDNA
 - HBV minichromosome in the hepatocyte nucleus

Post-infection Clearance of HBV Requires T cells

<u>Acute</u>

Multi-specific T cell response + anti-core/ anti-surface Abs

- 1. 2 3 months to clear acute HBV infection
- 2. CD8 T cells mediate clearance of infected cells
- 3. anti-HBs marker of resolution B cells
- 4. CD4 T helper cells support CD8 & B cells

<u>Chronic</u>

Weak T cell response + no effective antibodies

- 1. HBV-specific T cells are prone to apoptosis
 - a. Lopes, J Clin Invest 2008; 118: 1835–1845.
- 2. Co-express inhibitory receptors PD-1, CTLA-4, Tim-3
 - a. Nebbia, PLoS ONE 2012; 7: e47648.
 - b. Boni, J Virol 2007; 81: 4215–4225.
 - c. Schurich Hepatology. 2011; 53: 1494–1503.

Hepatitis B Virus Immune Evasion/Exhaustion

Hepatotropic virus

- Liver is generally a tolerizing organ
 - High IL-10, TGF-β, PD-L1, enzymes degrading essential amino acids
 - Low MHC class-I and co-stimulatory molecule expression on hepatocyte
 - Suppressive Dendritic cells, macrophages

High Antigen burden

- Small (3.2kb) DNA virus that infects hepatocytes
 - Can sustain up to 10¹⁰ HBV DNA copies/ml serum in chronic patients
 - viral antigen can reach 1 mg/ml in serum

Immune regulation at the innate and adaptive level

Multiple Levels of Immune Defects in Chronic Infection

Multiple Levels of Immune Defects in Chronic Infection

Multiple Levels of Immune Defects in Chronic Infection

Multiple Levels of Immune Defects in Chronic Infection

NK cells delete HBV-specific T cells

Das JEM 2008 Pallett Nat Med 2015

Multiple Levels of Immune Defects in Chronic Infection

NK cells delete HBV-specific T cells

Rationale for Immunotherapy in HBV

Spontaneous sustained immune control in adults following acute infection

Bone marrow transplant > Immune reconstitution > clearance of chronic HBV

Patients that spontaneously clear chronic HBV display robust T cell responses

Innate

- Blocking negative regulation
- Stimulating antiviral cytokine production

Adaptive

- Therapeutically boost HBV-specific T cell immunity
- Checkpoint blockade to release negative regulation

Coordinated, integrated immune response important

Opportunities for Innate-targeted Immunotherapy - Blocking Negative regulation -

A) Blocking NK TRAIL-mediated killing of HBV-specific T cellsF) Blocking MDSC-mediated suppression

Maini & Gehring. J. Hepatol. 64, S60–S70 (2016).

Blocking NK TRAIL-mediated killing of HBVspecific T cells.

Peppa J. Exp Med. 210, 99–114 (2013).

Opportunities for Innate-targeted Immunotherapy - Blocking Negative regulation -

A) Blocking NK TRAIL-mediated killing of HBV-specific T cellsF) Blocking MDSC-mediated suppression

Maini & Gehring. J. Hepatol. 64, S60–S70 (2016).

Blocking MDSC-mediated suppression

Opportunities for Innate-targeted Immunotherapy - Stimulating antiviral cytokine production --

CpG iMATE formation

- C) TLR-8 activation of intrahepatic monocytes stimulating IL-12 and IL-18
- D) TLR-7 mediated IFN-a production from plasmacytoid DC.
- G) Direct triggering of RIG-I in infected hepatocytes
- H) CpG induction of iMATEs

TLR-8 activation of intrahepatic monocytes stimulating IL-12 and IL-18

Jo et. al. PLoS Pathog. 2014 Jun;10(6):e1004210.

Opportunities for Innate-targeted Immunotherapy - Stimulating antiviral cytokine production --

CpG iMATE formation

- C) TLR-8 activation of intrahepatic monocytes stimulating IL-12 and IL-18
- D) TLR-7 mediated IFN-a production from plasmacytoid DC.
- G) Direct triggering of RIG-I in infected hepatocytes
- H) CpG induction of iMATEs

TLR-7 mediated IFN-alpha production from plasmacytoid DC.

0.5

0.25-

0

48

96

144 192 240 288 336

Time (h)

0.5-

0.25

0

48

96

144 192 240 288 336

Time (h)

Gane J. Hepatol. 63, 320–328 (2015).

Opportunities for Innate-targeted Immunotherapy - Stimulating antiviral cytokine production --

CpG iMATE formation

- C) TLR-8 activation of intrahepatic monocytes stimulating IL-12 and IL-18
- D) TLR-7 mediated IFN-a production from plasmacytoid DC.
- G) Direct triggering of RIG-I in infected hepatocytes
- H) CpG induction of iMATEs

Direct triggering of RIG-I in infected hepatocytes

Chronic Woodchuck Hepatitis Virus Infection model

Korolowicz. PLoS ONE 11, e0161313 (2016).

Opportunities for Innate-targeted Immunotherapy - Stimulating antiviral cytokine production --

CpG iMATE formation

- C) TLR-8 activation of intrahepatic monocytes stimulating IL-12 and IL-18
- D) TLR-7 mediated IFN-a production from plasmacytoid DC.
- G) Direct triggering of RIG-I in infected hepatocytes
- H) CpG induction of iMATEs

CpG induction of iMATEs

Huang et. al. Nat Immunol. 2013 Apr 14;14(6):574-83.

Opportunities for Innate-targeted Immunotherapy

Direct antiviral effect & potential environmental effect Concern: Innate immunity is inherently non-specific

Maini & Gehring. J. Hepatol. 64, S60–S70 (2016).

Innate

- Blocking negative regulation
- Stimulating antiviral cytokine production

Adaptive

- Therapeutically boost HBV-specific T cell immunity
- Checkpoint blockade to release negative regulation

Coordinated, integrated immune response important

Post-infection Clearance of HBV Requires T cells

<u>Acute</u>

Multi-specific T cell response + anti-core/ anti-surface Abs

- 1. 2 3 months to clear acute HBV infection
- 2. CD8 T cells mediate clearance of infected cells
- 3. anti-HBs marker of resolution B cells
- 4. CD4 T helper cells support CD8 & B cells

<u>Chronic</u>

Weak T cell response + no effective antibodies

- 1. HBV-specific T cells are prone to apoptosis
 - a. Lopes, J Clin Invest 2008; 118: 1835–1845.
- 2. Co-express inhibitory receptors PD-1, CTLA-4, Tim-3
 - a. Nebbia, PLoS ONE 2012; 7: e47648.
 - b. Boni, J Virol 2007; 81: 4215–4225.
 - c. Schurich Hepatology. 2011; 53: 1494–1503.

Therapeutic Vaccination in Chronic HBV Infection

Re-tooled prophylactic vaccine

- Proliferative response no viral clearance
 - Vandepapelière, Vaccine. 2007 Dec;25(51):8585–97.
 - Pol, J Hepatol. 2001 Jun;34(6):917–21.
 - Couillin, J Infect Dis. 1999;180:15–26.
 - Jung, Vaccine. 2002 Oct 4;20(29-30):3598–612.

Lipopeptide vaccine with immunodominant epitope

no T cell responses

Heathcote, Hepatology. 1999 Aug;30(2):531–6.

DNA vaccination

- Induction of transient T cell responses
- Transient drop in viral DNA
 - Yang Journal of Viral Hepatitis 2012;19(8):581–93.
 - Mancini-Bourgine, Vaccine. 2006 May 22;24(21):4482–9.
 - Mancini-Bourgine, Hepatology. 2004;40(4):874–82.

Immune Complexes + Alum

- Responses no better than alum alone
 - Xu, J Hepatol. 2013 May.

Transient responses and no significant induction of CD8 T cell immunity

Therapeutic Vaccination in Chronic HBV Infection

ABX203 – AbiVax

- HBcAg & HBsAg virus-like particles (VLP)
- Enrolling Phase IIb/III in chronic HBV patients on NUC treatment
- **GS-4774 Globelmmune** (Gaggar et. al. Vaccine. 2014 Sep 3;32(39):4925-31)
 - Recombinant yeast expressing HBV X,S, and C antigen
 - Enrolling Phase II in chronic HBV patients +/- NUC treatment
- **TG1050 Transgene** (Martin et. al. Gut. 2014 Nov 26 PMID: 2542905)
 - Adenovirus with modified/truncated HBV Core, Pol, Env fusion protein
 - Enrolling Phase I chronic HBV patients on NUC treatment
- INO-1800 Inovio
 - DNA plasmids encoding HBsAg&HBcAg +/- IL-12 plasmid DNA delivered by electroporation
 - Enrolling Phase I NUC treated chronic HBV patients

Innate

- Blocking negative regulation
- Stimulating antiviral cytokine production

Adaptive

- Therapeutically boost HBV-specific T cell immunity
- Checkpoint blockade to release negative regulation

Inhibition of HBV-specific T cell Function

Chronic

Weak T cell response + no effective antibodies

- 1. HBV-specific T cells are prone to apoptosis
 - a. Lopes, J Clin Invest 2008; 118: 1835–1845.
- 2. Co-express inhibitory receptors PD-1, CTLA-4, Tim-3
 - a. Nebbia, PLoS ONE 2012; 7: e47648.
 - b. Boni, J Virol 2007; 81: 4215–4225.
 - c. Schurich Hepatology. 2011; 53: 1494–1503.

Exhaustion

Bengsh et al, J Hep 2014

Therapeutic vaccination with checkpoint modulation

The NEW ENGLAND JOURNAL of MEDICINE

Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer

N ENGLJ MED 366;26 NEJM.ORG JUNE 28, 2012

Therapeutic vaccination with checkpoint modulation

Liu. PLoS Pathog 10, e1003856 (2014).

Balance Checkpoint Inhibition with Co-stimulation

PD-L blockade in combination with IL-12 Costimulation to Boost T cell recovery in vitro

HBV DNA (IU/ml)

Schurich et al PLoS Path 2013

Environmental Modulation to Boost T cell immunity

e.g. Combining therapeutic vaccination with TLR-9 agonist to induce i-mates

NATURE IMMUNOLOGY | ARTICLE

< 🖶

Intrahepatic myeloid-cell aggregates enable local proliferation of CD8⁺ T cells and successful immunotherapy against chronic viral liver infection

Li-Rung Huang, Dirk Wohlleber, Florian Reisinger, Craig N Jenne, Ru-Lin Cheng, Zeinab Abdullah, Frank A Schildberg, Margarete Odenthal, Hans-Peter Dienes, Nico van Rooijen, Edgar Schmitt, Natalio Garbi, Michael Croft, Christian Kurts, Paul Kubes, Ulrike Protzer, Mathias Heikenwalder & Percy A Knolle

Innate

- Blocking negative regulation
- Stimulating antiviral cytokine production

Adaptive

- Therapeutically boost HBV-specific T cell immunity
- Checkpoint blockade to release negative regulation
- What happens if adaptive immunity is beyond restoration?

Engineering anti-HBV Immunity

Engineering anti-HBV Immunity

Potential Immunological Targets for HBV Therapy

Innate

- Blocking negative regulation of adaptive immunity
- Stimulating antiviral cytokine production through pattern recognition receptor targeted drugs
- Modlulate the immunological environment to permit effective immunity

Adaptive

- Therapeutically boost HBV-specific T cell immunity
- Checkpoint blockade +/- co-stimulation to release negative regulation
- Engineering HBV-specific immunity

Coordinated, integrated immune response important